It Was Very Exciting, Yan Said.

Some Background Guidance On Wise Strategies Of Commercial News Feature

"They provide new insights which, combined with human creativity, allow for opportunities to improve designs within the practical product cycle." With the advanced model and new simulation methods in hand, Yan's team neared the finish line of its goal. Applying its new methods to the 2015 gas turbine, the team predicted a low instability level in the latest design that was acceptable for operation and would not affect performance. These results were affirmed during the full-scale gas turbine test, validating the predictive accuracy of the new simulation methods developed on Titan. "It was very exciting," Yan said. "GE's leadership put a lot of trust in us." With the computational team's initial doubts now a distant memory, GE entered a world of new possibilities for evaluating gas turbine engines. The path forward Validation of its high-fidelity model and the predictive accuracy of its new simulation methods are giving GE the ability to better integrate simulation directly into its product design cycle. "It's opened up our design space," Yan said. "We can look at all kinds of ideas we never thought about before. The number of designs we can evaluate has grown substantially." Coupled with advancements in other aspects of gas turbine design, Citeno projects the end result will be a full percentage-point gain in efficiency. This is important to GE's and DOE's goal to produce a combined-cycle power plant that operates at 65 percent efficiency, a leap that translates to billions of dollars a year in fuel savings for customers.